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3 Study area 
The meso- to macro-tidal Weser estuary is located at the German North Sea coast (figure 1).

 

Figure 1: Left: Overview of the Weser estuary with markings of the two sites A and B. Centre and right: study 
sites in detail with subsections. 

Site A was located at the southern end of the brackish reach and of the turbidity maximum zone 
(TMZ) during the experiments (figure 1). Depending on tidal phase, meteorological conditions and 
freshwater discharge, this zone can be shifted further up or down-stream (Grabemann & Krause 2001). 
The water column is well mixed due to tidal flow velocities of 1-1.3 m/s on average. SSC can reach 
values of up to 1.5 g/l in the water column of the TMZ (Grabemann & Krause 1989, 2001) with 
increasing values in the near-bed zone (Schrottke et al. 2006). Spatial distribution of SSC strongly 
depends on the tides. Whereas SPM is well distributed during ebb and flood phases, particle settling 
starts with decreasing tidal flow. Large particle aggregates of > 100 µm are formed (Wellershaus 
1981). 
Site B represents the freshwater reach (figure 1). Tidal currents, which amount to 1 m/s, are slightly 
lower (Schuchardt et al. 1993). SSC is mainly controlled by riverine input. Generally, SSC values do 
not exceed 0.05 g/l in the tidal dominated freshwater zone (Grabemann & Krause 2001, Schuchardt et 
al. 1993). Tidal induced SSC variation is less pronounced. 
Riverbed morphology in the channel sections of both sites is characterised by subaqueous dunes of up 
to 6 m in height and of up to 150 m in length (Schrottke et al. 2006). The dunes are mainly two- or 
three-dimensional, lateral orientated to the main flow direction in the navigation channel and reflect 
ebb dominance (Schrottke et al. 2006). Dunes are mainly consist of medium-sized sands (Stengel 
2006). Dune morphology and grain-size composition are frequently impact by dredging. 

4 Material and Methods 
In-situ PSD is detected by laser diffraction with a ‘Laser In-Situ Scattering & Transmissometry’ 
system LISST-100x (type-C, Sequoia® Scientific Inc.). A collimated laser beam is scattered at small 
particles in the water column and processed at a multi-ring detector. PSD is displayed in 32 
logarithmically-spaced size classes, ranging from 2.5 to 500 µm (8.6 to 1.0 Phi). Particles beyond the 
measuring range are assigned either to the finest or largest size class, respectively (Agrawal & 
Pottsmith 2000). This can cause rising tails at the boundaries. There is no option for differentiation 
between particles and air bubbles. PSD is presented as volume concentration (VC) of each size class, 
summed-up to TVC. This is related to optical transmission (τ) detected with a photodiode. Multiple 
scattering can appear at τ < 0.3, which leads to an overestimation of small particles (Agrawal & 
Pottsmith 2000). A path reduction module (50 %) was installed to reduce the optical path length and 
thus the sample volume. Checking the overall health of the instrument and in order to correct for 
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optical attenuation by water and microscopic imperfections on the optical surfaces, a background 
scattering was acquired in the morning of each measuring day. A full technical description of the 
LISST is done by Agrawal and Pottsmith (2000) and Agrawal et al. (2008). The LISST was applied 
from a drifting vessel in profiling mode down to the near riverbed. Minimum distance between 
dredging and research vessel amounted to ~30 m.  
TVC calibration was done by horizontal water sampling (2.2 litre, Hydro Bios©), at two different 
water depth. In the laboratory, an aliquot of defined volume was vacuum-filtered (glass-fibre filters, 
1.2 µ). The filters were dried at 60°C for 12 hours. SSC was calculated by dry mass per unit sample 
volume. 
Measurements were done on 10 June 2008 at site A and on 24 June 2008 at site B under low river 
discharge (180 m³/s, Water & Shipping Authority Bremen, pers. comm.) and neap tides. Both sites 
were subdivided in 4-5 subsections, representing the type of dredging impact such as maintenance or 
constructional work or unaffected subsections (reference), displayed in figure 1. All subsections 
exhibited comparable hydrodynamics and sedimentology. Profile indexes indicate relation of 
measuring position to WID: a) luv-site, b) lee-site c) on-site. 

5 Results 
TVC and τ significantly correlate, as found at both sites with R²=0.89 (figure 2). Overall, τ did not 
exceed 0.6, more often it decreased below 0.3, as found for 80 % and 15 % of all measurements, 
carried out at site A and B, respectively (table 1).  
 

 

Figure 2: Correlation of optical transmission (τ) and TVC for site A and B 

PSD changed within seconds from unimodal curves to the ones with rising tails at the coarse end of 
the size spectra. Depth-related changes of PSD and VC at site A are displayed in figure 3. Mean 
particles sizes range from 2.0 to 4.9 Phi (table 1) with a downward particle coarsening of 0.6 Phi on 
average as well as a slight increase of VC for size spectra > 8 Phi. A distinct development in mean 
particle size between the profiles is not obvious. Several times, water turbidity was announced to be 
too high before reaching the ground at subsections b and c without specific changes of TVC or particle 
sizes, as found by comparing measurements 7b and 8a in figure 3. At site B, mean particle-size range 
with 1.9 to 3.3 Phi (table 1) was slightly smaller, but again with no depth-related change (figure 4). 
Mean particle size only varied among the subsections.  
Highest TVC at site A amounted to ~1,600 µl/l during slack-water ebb (figure 3: 7c, 8a) and ~470 µl/l 
for site B around slack-water flood (figure 4: 1b - 3a, 15a -18c). SSC values ranged from 22 to 320 
mg/l and 26 to 128 mg/l at site A and B, respectively. 
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Figure 3: Depth-related VC and PSD at site A (brackish water zone). Solid curves represent mean particle size; 
dashed lines visualise TVC. 

 

Figure 4: Depth-related VC and PSD at site B (freshwater zone). Solid curves represent mean particle size; 
dashed lines visualise TVC. 
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Table 1: Measured parameter at site A and B. 

site A B 

 Ø size 
[Phi] 

TVC 
[µl/l] τ 

SSC 
[mg/l] 

Ø size 
[Phi] 

TVC 
[µl/l] τ 

SSC 
[mg/l] 

min 2.0 29.9 0.06 22 1.9 103.7 0.2 26 
max 4.9 1598.4 0.58 320 3.3 469.4 0.4 128 
Ø 2.9 650.2 0.22 113 2.8 239.2 0.3 47 

τ < 0.3   80%    15%  

6 Discussion and conclusion 
In the Weser estuary, suspended sediment dynamics are mainly controlled by tides and river-
discharge. This is clearly reflected in data sets of TVC, PSD and SSC, especially at site A, which was 
located in the brackish zone, at the southern end of the TMZ. Whereas no clear indication of WID 
impact is given at site B, some dredging induced effects can be derived from data-sets of site A. It is 
assumed that WID induces temporary increase of near-bed suspended particles (Meyer-Nehls et al. 
2000, Stengel 2006). Based on that, TVC must consequently increase. This might have caused 
repeated near-bed interruption of LISST measurements at site A during WID, where background TVC, 
SSC and mean particle size are side-specifically higher (brackish zone) as found at site B (freshwater 
reach). SSC did not rise simultaneously. This seems to be reasonable, taking into account that τ can 
also be considerably reduced by only few large particles or air bubbles (Mikkelsen & Pejrup 2000). 
Large particle-aggregates can enhance TVC without affecting mass concentration. Indeed, measured 
PSD indicated rising tails at the coarse particle-size spectra, repeatedly. Overall, it can be concluded 
that WID does not seem to have a significant impact on suspended sediment dynamics at the sites 
investigated with these methods. 

References  
Agrawal, Y.C. & H.C. Pottsmith (2000): Instruments for particle size and settling velocity observations in 

sediment transport. In: Marine Geology 168: 89–114. 
Agrawal, Y.C., A. Whitmire, O.A. Mikkelsen & H.C. Pottsmith (2008): Light scattering by random shaped 

particles and consequences on measuring suspended sediments by laser diffraction. In: Journal of 
Geophysical Research 113: 11. 

Aster, D. (1993): Der Einfluss von Wasseinjetionsbaggerung auf die Wassertrübung. In: Hansa 130: 64–65. 
Clausner, J.E. (1993): Water injection dredging demonstration on the Upper Mississippi River. U.S. Army Corps 

of Engineers, Waterways Eperiment Station. Dredging Research, DRP-93-3. 
Grabemann, I. & G. Krause (1989): Transport proccesses of suspended matter derived from time series in a tidal 

estuary. In: Journal of Geophysical Research 94: 14373–14379. 
Grabemann, I. & G. Krause (2001): On different time scales of suspended matter dynamics in the Weser estuary. 

In: Estuaries and Coasts 24: 688–698. 
Meyer-Nehls, R., G. Gönnert, H. Christiansen & H. Rahlf (2000): Das Wasserinjektionsverfahren: Ergebnisse 

einer Literaturstudie sowie von Untersuchungen im Hamburger Hafen und in der Unterelbe. Ergebnisse aus 
dem Baggeruntersuchungsprogramm 8: 111. 

Mikkelsen, O.A. & M. Pejrup (2000): In situ particle size spectra and density of particle aggregates in a dredging 
plume. In: Marine Geology 170: 443–459. 

Nasner, H. (1992): Injektionsbaggerung von Tideriffeln. In: Hansa 129: 195–196. 



76  Papenmeier et al. 
 
 

Schrottke, K., M. Becker, A. Bartholomä, B.W. Flemming & D. Hebbeln (2006): Fluid mud dynamics in the 
Weser estuary turbidity zone tracked by high-resolution side-scan sonar and parametric sub-bottom profiler 
In: Geo-Marine Letters 26: 185–198. 

Schuchardt, B.,U. Haseloop & M. Schirmer (1993): The tidal freshwater reach of the Weser estuary: riverine or 
estuarine? In: Netherlands Journal of Aquatic Ecology 27: 215–226. 

Spencer, K.L., R.E. Dewhurst & P. Penna (2006): Potential impacts of water injection dredging on water quality 
and ecotoxicity in Limehouse Basin, River Thames, SE England, UK. In: Chemosphere 63: 509–521. 

Stengel, T. (2006): Wasserinjektionsbaggerung in der Unterweser: Eine ökologische und ökonomische 
Alternative zu Hopper Baggerung. PIANC Deutschland - Schifffahrt, Häfen, Waserstraßen, S. 204–208. 

Wellershaus, S. (1981): Turbidity maximum and mud shoaling in the Weser estuary. In: Archiv für 
Hydrobiologie 92: 161–198. 

Woltering, S. (1996): Einsatz eines Wasserinjektionsgerätes zur Hafenunterhaltung. In: Hansa 133: 62–66. 

Acknowledgement 
This study was funded by the Deutsche Forschungsgemeinschaft in the frame of the Cluster of 
Excellence‚The Future Ocean’. It was part of the interdisciplinary project ‘Weser adaptation’, 
coordinated by the Water & Shipping Authority (WSA) Bremen and Bremerhaven, together with other 
German partner institutions. Thanks are given to the WSA Wilhelmshaven for providing additional 
ship capacity and support as well as to all partners for the good cooperation.  

Address  
Svenja Papenmeier  
University of Kiel - Institute of Geosciences 
Cluster of Excellence: The Future Ocean, Sea-Level Rise & Coastal Erosion 
Otto-Hahn-Platz 1  
24118 Kiel, Germany 

 
sp@gpi.uni-kiel.de 
 




